MATH 245 S19, Exam 3 Solutions

1. Carefully define the following terms: $=$ (for sets), union, disjoint.

Two sets are equal if they contain exactly the same elements. Given sets S, T, their union is the set $\{x: x \in S \vee x \in T\}$. Two sets are disjoint if their intersection is equal to the empty set.
2. Carefully define the following terms: De Morgan's Law (for sets), Cantor's Theorem, transitive
Given sets S, T, U with $S \subseteq U$ and $T \subseteq U$, De Morgan's law states that (a) $(S \cup T)^{c}=$ $S^{c} \cap T^{c}$; and (b) $(S \cap T)^{c}=S^{c} \cup T^{c}$. Cantor's Theorem states that no set is equicardinal with its power set. Given a relation R on set S, we say that R is transitive if for all $x, y, z \in S,(x R y \wedge y R z) \rightarrow x R z$.
3. Let R, S be sets with $R \backslash S=S \backslash R$. Prove that $R \subseteq S$.

Let $x \in R$ be arbitrary. We will prove that $x \in S$ by contradiction; that is, assume that $x \notin S$. By conjunction, $(x \in R) \wedge(x \notin S)$. Hence, $x \in R \backslash S$. Because $R \backslash S=S \backslash R$, in fact $x \in S \backslash R$. Hence $x \in S \wedge x \notin R$. By simplification, $x \notin R$. This is a contradiction. Hence, $x \in S$.
4. Prove or disprove: For all sets R, S, T satisfying $R \subseteq S, S \subseteq T$, and $T \subseteq R$, we must have $R=S$.
The statement is true. We have $R \subseteq S$ by hypothesis, so it suffices to prove that $S \subseteq R$. Let $x \in S$ be arbitrary. Because $S \subseteq T$, we have $x \in T$. Because $T \subseteq R$, $x \in R$.
5. Prove or disprove: For all sets R, S, we have $R \times S=S \times R$.

The statement is false; to disprove, we need explicit examples for R, S. One possible answer is $R=\{a\}, S=\{b\}$. To prove that $R \times S \neq S \times R$, we need an explicit element that is in one set but not the other. $(a, b) \in R \times S$, but $(a, b) \notin S \times R=\{(b, a)\}$.
6. Prove or disprove: For all sets R, S, we have $|R \times S|=|S \times R|$.

Note: The theorem $|R \times S|=|R| \cdot|S|$ holds only for finite sets R, S and will only provide partial credit.
To prove two sets are equicardinal, we need an explicit pairing between their elements. The natural one is $(x, y) \leftrightarrow(y, x)$, for every $x \in R$ and $y \in S$.
7. Consider relation $R=\left\{(a, b): a^{2} \geq b\right\}$ on \mathbb{Q}. Prove or disprove that R is reflexive.

The statement is false; to disprove, we need an explicit counterexample. If we take $a=b=\frac{1}{2}$, we see that $a^{2}=\frac{1}{4} \nsupseteq \frac{1}{2}=b$, so $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$ and hence R is not reflexive.
8. Prove or disprove: For all sets R, S, we have $2^{R} \cup 2^{S}=2^{R \cup S}$.

The statement is false; to disprove, we need explicit examples for R, S. One possible answer is $R=\{a\}, S=\{b, c\}$. To prove that $2^{R} \cup 2^{S} \neq 2^{R \cup S}$, we need an explicit element that is in one set but not the other. $\{a, b\} \in 2^{R \cup S}$, as it is a subset of $R \cup S=\{a, b, c\}$. However, $\{a, b\} \notin 2^{R}$, as it is not a subset of R. $\{a, b\} \notin 2^{S}$, as it is not a subset of S. Hence, $\{a, b\} \notin 2^{R} \cup 2^{S}$.
9. Let R, S, T be sets. Prove that $R \cap(S \cup T) \subseteq(R \cap S) \cup(R \cap T)$. Your answer should not use any theorems about sets.
SOLUTION 1: Let $x \in R \cap(S \cup T)$. Hence $x \in R \wedge x \in(S \cup T)$. By simplification twice, we get $x \in R$ and $x \in(S \cup T)$. Hence, $x \in S \vee x \in T$. We now have two cases: Case $x \in S$: By conjunction, $x \in R \wedge x \in S$. Hence, $x \in(R \cap S)$. By addition, $x \in(R \cap S) \vee x \in(R \cap T)$.
Case $x \in T$: By conjunction, $x \in R \wedge x \in T$. Hence, $x \in(R \cap T)$. By addition, $x \in(R \cap S) \vee x \in(R \cap T)$.
In both cases, $x \in(R \cap S) \vee x \in(R \cap T)$, and hence $x \in(R \cap S) \cup(R \cap T)$.
SOLUTION 2: Let $x \in R \cap(S \cup T)$. Hence $x \in R \wedge x \in(S \cup T)$. Hence $(x \in$ $R) \wedge(x \in S \vee x \in T)$. Applying the distributivity theorem (for propositions), we get $(x \in R \wedge x \in S) \vee(x \in R \wedge x \in T)$. Hence $(x \in R \cap S) \vee(x \in R \cap T)$, and finally $x \in(R \cap S) \cup(R \cap T)$.
10. Consider relation $R=\{(a, b): b \leq a \leq 3 b\}$ on \mathbb{N}_{0}. Compute and simplify $R \circ R$. Your answer should not use quantifiers.
We start with $R \circ R=\left\{(a, c): \exists b \in \mathbb{N}_{0}, a R b \wedge b R c\right\}$. This gives us four inequalities: $b \leq a \leq 3 b$ and $c \leq b \leq 3 c$. We combine two of them as $c \leq b \leq a$, and the other two as $a \leq 3 b \leq 9 c$. Hence the simplified version is $R \circ R=\{(a, c): c \leq a \leq 9 c\}$. Finding this, with justification, is enough for full credit.

For anyone curious about a proof that these sets are equal, here is an explicit calculation of b : Let (a, c) satisfy $c \leq a \leq 9 c$. If $c \leq a \leq 3 c$, we take $b=c$. If instead $3 c<a \leq 9 c$, we take $b=3 c$.

